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The coupling of two particles of identical quantum numbers, apart from their mass, is considered. It is 
shown that the effects of direct transitions of one particle into another can be treated exactly in terms of six 
parameters. These can be taken to be the true masses, the mixing parameters, and the partially renormalized 
coupling constants. This is a generalization of conventional mass renormalization for a single field. The 
special case of a photon and a neutral vector meson is discussed. Resonance effects may occur if the photon 
is virtual. However, gauge invariance and the vanishing of the photon mass forbid such effects for real 
photons, unless a dynamical accident relates the bare photon mass to the effective photon-meson couplings 
in a particular way. 

1. INTRODUCTION 

THE discovery of p and o> mesons, with the same 
quantum numbers as the photon, has aroused 

considerable interest in the general problem of the 
theory of the interactions of any two particles which 
are distinguished only by their differing masses.1 

We discuss this problem here in the context of the 
Lagrangian formulation. If each of the particles is 
coupled to other fields, then there is the possibility of 
their direct conversion into each other.2 This gives rise 
to resonance effects, which may be very marked if the 
masses of the particles are not too different. This direct 
conversion takes place through diagrams which have 
the form of off-diagonal self-mass elements. The main 
point of the first half of this paper is to show that the 
correct treatment of these effects is a very direct 
generalization of the standard (Dyson) procedure3 for 
the mass renormalization of a single field. This is to 
extract from the interaction currents the one-particle 
parts, which are treated exactly, and to base the 
perturbation expansion only on the residual interaction. 
In Sec. 2, the usual theory of a single particle is sum
marized in a manner which generalizes most directly 
to the two-particle case. In Sec. 3, this generalization is 
carried out. Since the particles can convert into each 
other, each propagator has poles at the masses of both 
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3 F. J. Dyson, Phys. Rev. 75, 1736 (1949); That this procedure 
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particles. The propagators and modified currents which 
treat the particle conversion and the diagonal self-mass 
effects exactly, can be expressed in terms of six param
eters. These may conveniently be taken to be the true 
masses of the particles, the partially renormalized 
coupling constants, and the mixing parameters, which 
determine the residues of the poles in the propagators. 
These six constants are the direct generalization of the 
single true mass in the one-particle case. The true 
particles are annihilated and created by linear combina
tions of the fields, which make allowance for the 
possibility of direct conversion of one particle into the 
other in external lines. 

If the effects of the residual interaction are calculated 
using perturbation theory, the six parameters mentioned 
above are related to the parameters of the original bare 
Lagrangian through expressions which involve divergent 
integrals. These relations are similar to those which 
relate the true mass to the bare mass and bare coupling 
constants in conventional theory. However, if the six 
constants are treated as finite parameters, taken directly 
from experiment (as in the conventional case with the 
observed mass), a finite renormalized perturbation 
theory can be developed in the usual way. This is shown 
in the Appendix, in which we also develop a convenient 
and perspicuous graphical representation. 

In Sec. 4 the results of Sec. 3 are extended to cover 
two particles of spin one. In Sec. 5 we consider the 
implications of gauge invariance, and the vanishing of 
the photon mass, on such particle mixing, when one of 
the particles is a photon. 

2. A SINGLE FIELD 

Before considering the interaction of two fields with 
the same quantum numbers, we summarize the standard 
procedure for a single field. Consider an unrenormalized 
field 4>(%) with Lagrangian density.4 

L=-±<t>(x)(-d*+tn*)<l>(%)+j(x)<l>(x)+' •., (2.1) 

where we have written explicitly only those terms which 

4 The form <t>d2<t> in the Lagrangian is shorthand for — (dM<£)2 

We use the space-like metrix, so that d2 = \r2—dt2. 
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depend on <£(#). The equation of motion is then 

Km(d2)<t>{x)^{-d2+m2)4>(x) = j{x). (2.2) 

If the mass of the true particle is M, the expectation 
value for this equation for a one true-particle state is 

(~M2+m?)(0\<l>(x)\M)==(0\j(x)\M). (2.3) 

The object of mass renormalization is to treat exactly 
the one-particle parts of this current. Assuming that 
<j>(x) is the only primary field which has a nonvanishing 
matrix element from the vacuum to the single true-
particle state of mass M, we can write 

(0\j(x)\Af)=A(0\4>(x)\M), (2.4) 

then combining (2.3) and (2.4) 

ZKm(M*)-AjO\$(x)\M)=0. (2.5) 

This is a homogeneous equation5 for (0| (/>(#) | M) which 
can be satisfied only if 

Km(M2)-A = 0. (2.6) 

To define a current which has no one-particle expecta
tion value, one can take 

J(x) = j(x)-A<t>(x). (2.7) 

This corresponds to rewriting the Lagrangian as 

Z = -U{Kmm-A)<i>+jcj>-UA<i>+ • • •. (2.8) 

The equation of motion is now 

KM{d2)4>{x)^{-d2+M2)4>{x)^J{x). (2.9) 

In the usual interaction representation, which is based 
on the interaction, J(x), the propagator is A, where 

KM(~p2)A(p2) = l. (2.10) 

This propagator takes into account exactly the one-
particle part of the current j(x). 

If a transition is made from an initial state \pj) to 
a final state ( / | , which includes a particle of four-
momentum p, the amplitude is6 

out{f\p,i)in= I e**$t{f\4>in(x)\i)Px ( 2 . 1 1 ) 

= eip*dt(f\<t>(%)\i)ds% 

= eiv*KM(d*){f\cl>(x)\i)d*x 

- e^x(f\J(x)\i)d'x, (2.12) 

6 Note that Km{]^)=>-~M%+m***-~bm%. The constant A 
is n*(if2), where n*(—p2) is the proper self-energy part, i.e., 
the mass operator. 

6 In this paper we are only concerned with the mass renormaliza
tion of a single field and its generalization to the two-field case. 

3. COUPLED SPIN-ZERO FIELDS 

We now consider the theory of two stable particles, 
which apart from their masses, have the same quantum 
numbers. Suppose that the unrenormalized fields are 
0i (x) and 4>2(x) and that the terms in the Lagrangian 
which depend explicitly on <j>i(x) are 

i ^ - ^ i ^ X - d M - W ! 2 ) ^ 

+ii(*)0i(*)+i2(*)02(a)H . (3.1) 

Then the equations of motion7 are 

( - a 2 + ^ 2 ) ^ ( ^ ) = j » , ( t = l , 2 ) . (3.2) 

The one true-particle matrix elements of these equations 
are 

(-Mjf+tnfiiOlUx) | Afjb>= (0\ji(x) | Mk). 

i,k=l,2. (3.3) 

As in the single-particle case, we wish to extract, and 
treat exactly the one-particle parts of the currents 
ji(x). To this end we write 

(01 jt(x) | Mk)= ZJA f/«(01 *,(*) | Mk). (3.4) 
Define 

Kv(Mh*)= (-Mf+tnfidij, (3.5) 
then 

ZLKijiM^-AijWJOlfrix) \Mk)=0. (3.6) 

This is a homogeneous equation for the matrix elements, 
which can only be satisfied8 if 

d e t [ # ( M * 2 ) - ^ ] = 0 . (3.7) 

Explicitly the relation (3.7) between the bare and 
true masses is 

[M&
2-m1

2+^11(M fc
2)][^2-m2

2+^22(M,2)] 
-^ i2 2 (M, 2 ) = 0. (3.8) 

Since A(k) are symmetric matrices,8 the elements Aifk) 

are a set of six constants. In place of the six constants 
Aij{k\ it is convenient to introduce six new constants 
Gih Hij such that AiJ^ = Gij+Mk

2Hij.
9 

For this reason we omit all Z factors associated with complete 
field renormalization. For example, the right-hand side of (2.12) 
should read 

Z-™f<**%t{f\<j>(%)\i)d*x. 
7 For the sake of simplicity we assume that j \ (x) does not 

depend on 4>i(x). 
*The complete propagator matrix &'{p2) in momentum space 

is given by 
[^ r ( -^ ) -n*( -^ ) ]A ' (^ ) = i, 

where we know from Dyson's analysis that graphically n*(—jf) 
is all proper self-energy parts (i.e., those which cannot be broken 
into two parts connected by a single line). Since A'(p?) has poles at 
f+Mk

2=Q, it follows that (i), det£K(M#)-IL*{M#)]=0. By 
comparison with Eq. (3.7), (ii), AW~TL*(Mk

2). Thus, Ay™ 
are constants which can, in principle, be calculated (to any order 
in perturbation theory, for example) by calculating n*(—/>*) and 
solving (i). I t is evident from crossing symmetry that H#*(—f) 
= Hji*(—p2) and the matrices A^h) are symmetric. 

9 If the theory is symmetric for the exchange <f>i <-» 02, Wi «-* m%, 
and the coupling constants gi <~>g2, then Z/̂ -ssO, and three con
stants suffice. 
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To define a current which has no one-particle matrix 
elements, we can take 

Ji(%)* ji(*)-A* (d*)fc(*), (3.9) 

where 

Aij(d
2) = Gij+d2Hij. (3.10) 

This corresponds to rewriting the Lagrangian as 

+[_ji<t>i-UiAij(d*)<t>3
:]+ • • • • (3.H) 

The equations of motion in terms of / are 

LKijW-AijWfr^Ji. (3.12) 

Thus, from (3.6), (3.7), and (3.8) it follows that 

d e t [ i £ ( - £ 2 W ( - ^ ) ] = 0 , (3.13) 

where: 

In carrying out a perturbation expansion based on the 
current Ji, the quantity JiAijJj can be regarded as the 
effective interaction for those matrix elements which 
involve the particles of mass Mi internally. I t is now 
convenient to introduce the partially renormalized 
currents13 JiR defined such that 

JiZAijZJjX^JiAijJj. (3.19) 

Thus, 
JiR=Rili*Ji. (3.20) 

10 We shall see later that when one of the particles is a photon, 
due to the gauge invariance and the fact that the photon mass is 
zero, the photon pole occurs only in one element of A(^2), namely, 
the photon-photon propagator. (Ref. 1.) 

11 By partial renormalization we mean that part of field re-
normalization, which is due to the one-particle parts of the 
interaction. This is the direct generalization of mass renormaliza
tion for a single field. We do not discuss conventional coupling 
constant and field renormalization induced by radiative correc
tions, coming from the residual interactions / ; . This accounts for 
the absence of Z factors in (3.29). See Ref. 6. 

12 In the approximation in which A12 can be neglected in (3.7), 
which relates the true and bare masses, we have X;c^412(Mi2)/ 
(Mi2—Mi2). That the propagator has the form (3.17) is clear, since 

<0|fc«| J f i H l , (O|02^|M1) = X1, etc., 
and 

13 The partial renormalization, which has been done, has the 
effect of replacing the unrenormalized coupling constants g», 
appearing in ji, by the partially renormalized constants giR 

~Rill2gi. (See Ref. 11.) 

at the two-point 

f+Mj?"*0. ( * « l , 2 ) (3.14) 

The propagator in the interaction representation 
based on /»•, which treats exactly the one-particle parts 
of ji, is given by 

[ £ ( - # » ) - , 4 ( - # » ) > ( # * ) = 1. (3.15) 

A(p2) is a matrix propagator [the inverse of K(—p2) 
-\-A(~p2)~] each element of which, in general,10 has 
poles at both masses, Mi?. 

I t is convenient for later purposes to introduce the 
partially renormalized propagator11 AR(p2). This is to 
be defined so that the residue of the AuB element at the 
mass Mi2 is unity. Thus, we take 

Ay*(f)=Rrlt*Aii(p')Rrm, (3.16) 

where Ri is the residue of Au(p2) at p2=—Mi2. This 
leads to 

Accordingly, the interaction picture, which takes into 
account exactly the effects of the two single particles 
on each other, can be expressed in terms of six param
eters; either the A ^ , or, the physically more perspic
uous parameters, the observed masses Mi2, M2

2, the 
mixing parameters Xh X2, and the coupling constants 
in the partially renormalized currents JiR, J2

R. 
To complete the presentation we must give the 

technique for handling external lines. We do this by 
making use of the asymptotic condition. In order to 
use this, we must introduce fields \j/i, which have discrete 
frequencies corresponding to only the ith single-
particle state. In other words, we must introduce the 
"normal coordinates," 

^ = L 0 , (3.21) 

where L is the matrix that diagonalizes the propagator 
A. 

We define the diagonal matrix 

LKM(»)2H= (-d'+Mfidij. (3.22) 

Thus, L is given by14 

_ _ _ _ _ K(d2)-A (d2) = LTKM(d2)L, (3.23) 

14 Explicitly, the matrix L is 

L^iMJ-Mt*)-"112 

v / (-M2
2+m1

2-All(Mz
2)yi2(~M22+m2

2--A22(M22)yl2\ 
* \ -(M1

2~Mi2+Au(M1
2)yl2(Mi2-m2

2+A22(Mi2)y12 ) ' 

A**(# 2 ) = 

1 X2
2 Xx X2 

p2+Mx
2 p2+M2

2' p2+Mi2 p2+M2
2 

1 X2 

+ 

xt 

f+Mia pz+Mi f+Mi* p2+Mi 

[ M i 2 - m2
i+A22(MiiW2r-M22+mi!-An(M2

2)J/2 

(3.17) 

(3.18) 
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or 

&(p*)~L-'KM~l(-p2)(LT)-1. 

The currents $i, associated with ^ are 

3=JL-\ (3.24) 

Equating the residues at the poles in the relation 

JiAijJj^ JMyZJ*** SiKMtr'Ss, (3.25) 

we have immediately, using (3.17), 

3i=JiB+XiJ*B, (3-26) 

g2=J2R-X2J1
R. (3.27) 

The diagonalized equations of motion are thus 

KM^ = S- (3.28) 

The asymptotic condition can now be defined in terms 
of these fields. 

A scattering matrix element involving a type-1 
particle, with four-momentum ph can be written, as 
in (2.11). (See also Ref. 6.) 

= / eipi*dt(f\\pi(x)\i)d*x 

= e^i-dz+Mi^iflti^li^x 

= / eipix(f\Si(x)\i)d4x 

= ei^f\J1
R(x)+X1J2

R(x)\i)d*x. (3.29) 

This last expression is just what one would expect 
from "graphology.'' We see from Eq. (3.18), and Ref. 
12, that Xi is essentially the effective <£i</>2 vertex, 
divided by the propagator of a particle of mass M2 

evaluated at the mass Mi (see Appendix). 
If the mass difference is small and the coupling of 

J2 is much stronger than Jh the appearance of the 
second term depending on Xi may introduce a consider
able enhancement of the effective coupling of type-1 
particles to the other fields.15 

Note that the whole calculation could be carried out 
using the diagonalized fields \p without changing any of 
the physical results. In this case the propagator matrix 
is diagonal, each element having only one pole. How
ever, the particles are now coupled to the $i which are 
linear combinations of the original currents, which 
depend on the mixing parameters, Xi. 

16 Effects such as these were reported by S. Berman and S. 
Drell at the MIT-Harvard Conference, 1963 (unpublished). 
However, see Sec. 5. 

4. COUPLED SPIN-ONE FIELDS 

We now consider the case of two particles of spin 
one. We use the formalism developed by the authors.16 

If the fields are 0M
(i) (i= 1, 2), the equations of motion 

are 

• (d25M„ — diXdv) + Wik
2 

V A*2/ 
!*,<*> = i,/*>, (4.1) 

or 

{my 
(k) 

where 

and 

= r^d)j^+\^d)jVk\ (4.2) 

rM,(a)=5M,-a^v/a2 (4.3) 

XM,(d) = cWc>2 (4.4) 

are the projection operators for the "covariant trans
verse"—space-like and "covariant longitudinal"—time
like—-components of the fields. Thus, nth are the bare 
masses of the physical spin-one particles; A& are the 
masses of the time-like (spin-zero) mesons. If the 
current j ^ k ) is conserved, 

X^(d)>*) = 0, (4.5) 

and the particles of mass A* have no interaction, but 
serve merely to specify a gauge.17 

The formalism of Sec. 2 can be taken over and applied 
directly and independently to rM„<£„(i) and AMJ,<£„(i). Thus, 
for example, we can write the A matrix as 

^ ( - f ) = v W w ( - ^ ) + ^ ^ w ( - ^ ) . (4-6) 
The propagator is 

AAf) = r „ A « (£ 2)+VA ( X ) if), (4.7) 
where 

and 

Here 

and 

ftj«(-^)-^/'>(-^]A("(^) = l (4.8) 

&«<*>(-?)-A «<»(-#*)><«(#») = 1 • (4.9) 

KaM (&) = ( - # + » < • ) « « (4.10) 

A;2 
(4.11) 

As in Sec. 3, the one-particle part of the general interac
tion can be treated in terms of twelve phenomenological 
constants (six each for the space-like and time-like 
parts) which can be chosen in a manner analogous to 
that in Sec. 3. 

16 G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 
(1963). 

17 A vector meson coupled to a nonconserved current is given by 
taking X —> oo y whereas for a photon X is arbitrary. This expresses 
the gauge invariance of photon interactions. (See Ref. 16.) 
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5. THE PHOTON-VECTOR MESON INTERACTION 

We are particularly interested in the case in which 
one of the particles involved is the photon, 

<t>^ = A » . (5.1) 

We replace the particle labels, 1, 2 by A, V, respec
tively.18 For the moment we allow the photon to have 
a mass, but the gauge invariance requires that 

W = 0 . (5.2) 

From (3.4) and (5.2) it follows that19 

AAA(X)(-P2) = AAVW(-P2) = 0- (5.3) 

The "longitudinal" part of the propagator, as denned 
in (4.9), is 

r \A* I 
0 

MAHP'+XA2) 

Xv2 

0 
L ntv^ip-'+Xv^-Xr^Avr^i-p2)) 

(5.4) 

showing that the time-like photons are not coupled to 
the rest of the system.20 The time-like mesons are 
coupled through the nonconserved part of j ^ v to the 
other fields in the system, and thereby undergo a mass 
renormalization.21 

The ' ' transverse" part of the propagator is defined 
by (4.8). This is completely gauge invariant, since the 
presence of the factor rM„ in (4.7) automatically excludes 
the possibility of any dependence on a particular 
gauge. Thus, the interaction is described in terms of six 
phenomenological constants which can be chosen, as in 
Sec. 3, to be the observed masses MA2, My2 of the 
photons and meson, and the mixing parameters XA, 
Xv and the partially renormalized coupling constants. 

However, the photon mass is observed to be zero, and 
this experimental fact must be included in the formalism 
in addition to the requirements of gauge invariance. 
This means that A ( T ) ( ^ 2 ) must have a pole at ^ 2 = 0 , 

18 The field <£M
(2) can be taken to represent either a p or co meson. 

However, in what follows we restrict ourselves to the approxima
tion in which the V particle can be treated as stable. 

19 Alternatively, 

n l „ * ^ ( - ^ ) = r ^ n * ^ ( - ^ ) . 
20 We are assuming throughout this section that the theory is 

invariant under gauge transformations of the field A M. As a 
consequence, A(X) (p2) is diagonal. The same is true for the field A / 
for which, by definition, A(r)(^2) is also diagonal. This is to be 
contrasted with the approach of Bar off and Fulton (Ref. 1) who 
start with a nondiagonal A(X) (p2) and transform to gauge-invariant 
variables. 

21 As pointed out in Ref. 17, we are interested in the limit 
Xv —-> oo. 

and hence 

^IP2+MA2-AAA(T)(-P2)1 

XZp2+mv2-Avv^(-p2)l-\:AAv^(-p2)J (5.5) 

has a zero at p2=0. Putting 

this requires that 

(mA2-GAA^)(mv2-Gvv(T))-LGAv(T)J-0. (5.7) 

I t is conceivable that the constants G and the bare 
masses m i and my are precisely such that this equation 
is satisfied as a dynamical accident. This would mean 
that the mass-generating effects of the interaction, of 
the type proposed by Schwinger22 are operating, but 
are exactly cancelled by the nonvanishing bare mass. 
This could hardly happen as a dynamical fluke and, if 
it is indeed the case, strongly suggests the operation of 
some as yet undiscovered general principle of which this 
is a particular consequence. This general principle is not 
gauge invariance. I t seems to us much more probable 
that the correct solution is the one given by conven
tional perturbation theory,23 namely, 

»U 2 =0, GAAv = GAr2M = 0. (5.8) 

This imples that 

AAAM(-P2)=-P2HAAM, (5.9) 

AAv^(-p*)=-p*HAV^, (5.10) 

and hence, by (3.18), the mixing parameter XA vanishes, 

XA=0. (5.11) 

The partially renormalized propagator matrix is then 

1 JC 2 

AAA^R(P2) = - + — , 

p2 p2+Mv
2 

AAV(r)R(p2)= ( 5 < 1 2 ) 

p2+Mv
2 

1 
AvviT)R(p2) = , 

p2+Mv
2 

so that only the photon-photon propagator has a pole 
at the photon mass.10 The mixing parameter Xv is of 
order e, so the coupling of a virtual photon to any 

22 J. Schwinger, Phys. Rev. 125, 397 (1962). 
23 We remind the reader that (5.8) states that U^(-p2) 

= (p%»—pnpp)f(p2), for the A A and AV elements, where f(p2) is 
regular at p2 — 0. The regularity of f(p2) is not a consequence of 
gauge invariance, but is a plausible inference from the observed 
vanishing of the photon mass. 

Alternatively, the above inference implies that of the two 
counter terms in the Lagrangian involving direct A — V coupling, 
GAvVnTnyAr^HAvidnVv—dyV^idvAv—dpAn), only the second 
survives. 



828 G . F E L D M A N A N D P . T . M A T T H E W S 

strong-interaction complex is enhanced through the 
propagator AAV(T)R> This represents the effects of the 
direct transformation of the photon into a V meson, 
which then interacts strongly with the complex. The 
best-known example of this is in electron-proton scatter
ing. (See Appendix.) 

For the interaction of a real photon we can take over 
directly the formalism of Sec. 3, and in particular (3.29). 
Owing to the vanishing of XA, there is no enhancement 
for external photons, due to direct conversion. The 
contribution from all such graphs vanishes identically 
as a consequency of the observed vanishing of the 
photon mass.24 

CONCLUSIONS 

We have shown how to generalize the conventional 
procedure of mass renormalization to the case of two 
interacting particles with the same quantum numbers, 
but different mass. As in the single-particle case, the 
procedure is to extract from the interaction currents 
the one-particle parts and treat the,m exactly. A 
perturbation expansion may then be carried out in 
terms of the residual interaction. Instead of the true 
mass, which appears in the single-field case, the two 
fields require six parameters, which may conveniently 
be taken to be the two true masses, the mixing param
eters, and the partially renormalized coupling constants. 

In general, the fact that the particles can convert 
directly into each other gives rise to resonance-type 
enhancements for both, virtual and external particles. 
However, if one of the particles is a photon, the vanish
ing of the photon mass causes the contributions from 
graphs in which a real photon converts directly to a 
spin-one meson, to vanish identically. On the other 
hand, for virtual photons (as for example in the proton 
electromagnetic form factors) the resonance effects 
persist. 

The above conclusions can alternatively be expressed 
in terms of the effective direct A — V interaction. Terms 
of the form V^A^ have sometimes been assumed in the 
past.15'22 The objection that this interaction term is not 
gauge invariant can easily be overcome by modifying 
it to VpTpvAv. However, such a term, barring the 
dynamical accident discussed after (5.7), gives rise to a 
nonvanishing photon mass. 

It should perhaps be stressed that we have reached 
these conclusions on the basis of renormalized field 
theory. Within this framework our results are quite 
general. Although the validity of field theory is doubted 
by some for purely strong interactions, it is our belief 
that the problems of electrodynamics discussed here 

certainly fall within this framework, and that our 
result is therefore quite general. 

APPENDIX 

We develop here a graphical formalism, which 
clarifies the physical significance of the algebraic 
manipulations carried out above, and also simplifies 
the setting up of specific calculations. 

We set up a 'one-particle' interaction representation, 
in which the part of the Lagrangian to be treated 
exactly is 

L 0 = - i0,^/ / 2[^(a 2)-^,y(a 2)] i?/ /v. (Ai) 

The interaction is then 

Liat=4>iBjiB-foi*R*XI2A a (d W ViB • (A2) 

Here 4>iR are the partially renormalized fields, 

The graphical technique is completely conventional 
except for the factors corresponding to the two particles 
associated with the fields <j>. For these there are three 
types of propagator which may be represented as 
illustrated in Table I. We use solid and dotted lines to 
denote particles of types 1 and 2, respectively. It will 
be observed that these must join to JiR and J2

B, 
respectively. 

If an external particle of type 1, four-momentum ph 

occurs in a process the procedure is to draw all graphs 
in which this particle is represented by a 1 — 1 line 
coupled to JiR, and by a 1 — 2 line coupled to Jin. 

TABLE I. A graphical representation of internal and external 
particle lines giving the corresponding factors in the matrix 
element including the interaction currents. The relation between 
the external line graphs and the corresponding factor is discussed 
in the text. 

24 Thus, subject to the qualifications expressed just above 
Eq. (5.8) there seems to be no justification for the model of IP-
decay proposed by M. Gell-Mann, D. Sharp, and W. G. Wagner, 
Phys. Rev. Letters 8, 261 (1962). The fallacy in their argument 
lies explicitly in the form of renormalized field equations assumed 
by M. Gell-Mann and F. Zachariasen, [Phys. Rev. 124, 953 
(1961), Eq. (4.2)] which are only valid when the two fields A^ 
and <£M are not coupled via the mass operator. 
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Xi X2 + 
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External lines 
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v. 

(particle 2) 
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+ 
} ~ / 2 * . . . 

x +x2/^... 
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These graphs • are to be evaluated by including the 
corresponding propagators, AU

R (p2) and A12
R (p2), 

coupled appropriately to JiR and J2
R, respectively, 

multiplying by p2-\-Mi2, and then evaluating at 
p2+Mi2=0. (This procedure is correct, but trivial in 
the one-field case.) This gives rise to graphs with a 
factor JiR arising from &nR{p2)J\R, and graphs with a 
factor X\J2

R arising from Ai2
R(p2)J2

R. 
As remarked in the text, the two types of terms are 

just those to be expected on 'physical' grounds. In the 
first one, particle 1 enters the graphs directly through 
its current JiR. In the second type, particle 1 converts 
directly to particle 2, and then enters the graph through 
J2

R. The approximate expression for X{, given in Ref. 
12, is just the factor to be expected, since Au(Mi2) 
is the effective direct-conversion interaction, and 
(Mi2—M22)""1 is the propagator for particle type 2 
evaluated at p2+Mi2 = 0. 

The operative parts of the currents, JiR, are the jiR 

which arise directly from the original interaction. These 
currents induce various physical processes, among them 
being proper self-energy effects, through which one of 
the particles converts either back to itself, or to the 
other particle (with no single-particle intermediate 
state). Corresponding to each graph containing such a 
part is another graph, which is identical except that the 
self-energy part is replaced by a direct transition of one 
particle into another, arising from the counter term 
Aij. The definition of Ai3', (3.4), is such that the two 
graphs precisely cancel, when 

p2+Mk
2=0, 

where p is the four-momentum of the line in which the 
self-energy part occurs. (See Ref. 8.) This is a direct 
generalization of the cancelling of the leading term in 
conventional single-field self-energy graphs by the dm2 

counter term. (See Ref. 5.) 
The only irreducible proper self-energy part generated 

from ji is the lowest order self-energy bubble, n#* (—p2). 
Since this is bilinear in j% and jJ7 the corresponding 
graph generated from Zint is 

-p2)Rj1/2 

^R^2l(p2+M1
2)Cij^+(p2+M2

2)Cij^ 
+ (p2+M1

2)(p2+M22)n%{-p2m^2. 

The counter term from Zint is 

(A3) 

(A4) 

This has been defined to cancel the term in II* depend
ing on C(1> and C(2). 

Note that for external lines, JiR can be replaced by 
jiR, where j \ R couples to the main body of the graph, 
and does not recombine to form a self-energy part. In 
view of (A3) and (A4) the contributions from self-
energy parts in external lines cancel exactly with the 
counter terms. 

In practice, even in a renormalizable theory, the 
constants C(f) are infinite, but "physical" quantities 
can be expressed in terms of the parameters Mi, Xi, 
and partially renormalized coupling constants. Self-
mass effects may be estimated, through (A3) with the 
use of a cutoff, by solution of (3.13). 

A simple example of the above formalism is the 
electromagnetic form factors of the proton, as deduced 
from electron-proton scattering. In this case, particle 1 
is the photon, and particle 2 a V particle (p or co meson). 
The appropriate diagrams are shown in Fig. 1. The 
coupling of the photon and meson to the electron and 
proton can be expressed in terms of four currents. In 
an obvious notation the orders of magnitude of these 
currents are 

JA„e^e, jVll
e~e*. 

The mixing parameter Xy is of order e. Thus, 

(A5) 

M=j. An 

1 Xy* 

-+ 
f p2+Mr2 

Xv 

j ' V + j V 
XV 

p2+Mv-
-ivf 

-Jvf 
p2+My 

-JAf+jvS 
P2+M* 

-Jvf (A6) 

We have already replaced 7> by 8^ since the electro
magnetic current is conserved. To order e2 we have, 
by (A5), 

M^jAlx
l 

r l Xv 

~JA/ -Jvf 
1 

^jA,«-F,(p2), (A7) 
-f p2+Mv

2 

where F^p2) is the required form factor. Thus, 

p2Xv 

F,(p2) = jAf-
p2+Mv 

-JvS (A8) 

FIG. 1. Graphs of electron-proton scattering. Single lines with 
arrows denote electrons and double lines with arrows are protons. 
The exchanged four-momentum is p. 
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The 'Dirac' form factor Fi is the coefficient of 7M. Since 

JAf=ey», (A9) 

and taking 

jvf=gvy>, (A10) 

y 
- (All ) 
v2 

INTRODUCTION 

TH E process y-\-p-^ir+-\-n has been studied for 
a long time, and the reaction provides, particu

larly at low energy, one of the simplest testing grounds 
for our knowledge of pion physics. The advent of 
dispersion theory has resulted in new theoretical calcu
lations,1,2 with the most recent ones including the effect 
of the 7r-7r interaction.3,4 The measurements reported 
here were undertaken to determine differential cross 
sections with improved accuracy, in the region moder
ately close to threshold. 

The pions were detected with a magnet spectrometer 
and counter telescope, and the arrangement was ap
propriate to pions with laboratory momenta from about 
55 to 102 MeV/c, at laboratory angles between about 
30° and 130°. A complete angular distribution could 
be measured for a laboratory gamma-ray energy of 
180 MeV, while at other energies cross sections were 

* Supported by the U. S. Atomic Energy Commission, Office 
of Naval Research, and Air Force Office of Scientific Research. 

f Present address: Laboratoire de FEcole Polytechnique, Paris, 
France. 

{Present address: Physics Dept., California Institute of 
Technology. 

1 G. Chew, M. Goldberger, F. Low, and Y. Nambu, Phys. Rev. 
106, 1345 (1957); hereafter referred to as CGLN. 

2 C. Robinson, University of Illinois, Technical Report No. 8, 
1959 (unpublished). 

3 J. Ball, Phys. Rev. 124, 2014 (1961). 
4 J. M. McKinley, Technical Report No. 38, Physics Depart

ment, University of Illinois, Urbana, 1962, (unpublished). 

which is just the Clementel-Villi form obtained from 
subtracted dispersion relations.25 

In this two-field theory, perturbation calculations 
could alternatively have been developed in terms of the 
diagonalized fields \f/iy defined in Eq. (3.21). This has 
the advantage that the propagator matrix is diagonal. 
However, all the complication is transferred to the 
interaction. The mixing parameters X» now appear in 
the currents $i and the extraction of the finite parts of 
the mass operator is considerably less transparent. 

25 E. Clementel and C. Villi, Nuovo Cimento 4, 1207 (1956). 

determined for angles where the pion momentum lay 
within the experimental range. 

When these measurements were begun, the work of 
Beneventano et a/.5-6 constituted the most accurate and 
comprehensive study in this energy interval. More 
recently, Adamovich et al? have performed an experi
ment using emulsion techniques, with accuracy com
parable to this one. 

APPARATUS 

The intensity of the electron beam of the Stanford 
Mark I I I linear accelerator was measured with a 
secondary emission monitor (SEM)8 consisting of three 
foils of 0.0003-in. aluminum, enclosed in a separate 
vacuum chamber with 0.003-in. dural windows. The 
SEM was automatically oscillated both horizontally 
and vertically in order to average over a foil area 
about 1.5-in. square. This monitor was calibrated at 
regular intervals against a Faraday cup of efficiency 

6 M. Beneventano, C. Bernardini, D. Carlson-Lee, G. Stoppini, 
and L. Tau, Nuovo Cimento 4, 323 (1956). 

6 E. L. Goldwasser, in Proceedings of the 1960 International 
Conference on High-Energy Physics at Rochester (Interscience 
Publishers, Inc., New York, 1960), p. 26. 

7 M. I. Adamovich, E. G. Gorzhevskaya, V. G. Larionova, 
N. M. Panova, S. P. Kharlamov, and F. R. Yagudina, in Pro
ceedings of the 1962 International Conference on High-Energy 
Physics, CERN, (CERN, Geneva, 1962). 

8 G. W. Tautfest and H. R. Fechter, Rev. Sci. Instr. 26, 229 
(1955). 
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Photoproduction of *+ Mesons from Hydrogen* 
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The differential cross section for TT+ photoproduction has been determined at 19 points, at center-of-mass 
angles from 30 to 150 deg, and at photon energies from 162 to 225 MeV. The data are concentrated near 
180 MeV, where a full angular distribution has been determined. The relative values of the cross sections 
are accurate to 5% or better, and the absolute normalization is accurate to 4%. The experiment provides 
data of improved accuracy which are in general consistent with previous results. The extrapolation to 
threshold gives a value for (k*/p*)(d<r/dti)* at threshold of 16.1±0.7 fxb/sr, where k*f p*f and (dv/dti)* are 
the photon energy, pion momentum, and differential cross section, all in the center-of-mass system. 


